Reading the Videos: Temporal Labeling for Crowdsourced Time-Sync Videos Based on Semantic Embedding

نویسندگان

  • Guangyi Lv
  • Tong Xu
  • Enhong Chen
  • Qi Liu
  • Yi Zheng
چکیده

Recent years have witnessed the boom of online sharing media contents, which raise significant challenges in effective management and retrieval. Though a large amount of efforts have been made, precise retrieval on video shots with certain topics has been largely ignored. At the same time, due to the popularity of novel time-sync comments, or so-called “bullet-screen comments”, video semantics could be now combined with timestamps to support further research on temporal video labeling. In this paper, we propose a novel video understanding framework to assign temporal labels on highlighted video shots. To be specific, due to the informal expression of bullet-screen comments, we first propose a temporal deep structured semanticmodel (T-DSSM) to represent comments into semantic vectors by taking advantage of their temporal correlation. Then, video highlights are recognized and labeled via semantic vectors in a supervised way. Extensive experiments on a real-world dataset prove that our framework could effectively label video highlights with a significant margin compared with baselines, which clearly validates the potential of our framework on video understanding, as well as bullet-screen comments interpretation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-Shot Event Detection by Multimodal Distributional Semantic Embedding of Videos

We propose a new zero-shot Event Detection method by Multi-modal Distributional Semantic embedding of videos. Our model embeds object and action concepts as well as other available modalities from videos into a distributional semantic space. To our knowledge, this is the first Zero-Shot event detection model that is built on top of distributional semantics and extends it in the following direct...

متن کامل

A Novel Caching Strategy in Video-on-Demand (VoD) Peer-to-Peer (P2P) Networks Based on Complex Network Theory

The popularity of video-on-demand (VoD) streaming has grown dramatically over the World Wide Web. Most users in VoD P2P networks have to wait a long time in order to access their requesting videos. Therefore, reducing waiting time to access videos is the main challenge for VoD P2P networks. In this paper, we propose a novel algorithm for caching video based on peers' priority and video's popula...

متن کامل

A Novel Caching Strategy in Video-on-Demand (VoD) Peer-to-Peer (P2P) Networks Based on Complex Network Theory

The popularity of video-on-demand (VoD) streaming has grown dramatically over the World Wide Web. Most users in VoD P2P networks have to wait a long time in order to access their requesting videos. Therefore, reducing waiting time to access videos is the main challenge for VoD P2P networks. In this paper, we propose a novel algorithm for caching video based on peers' priority and video's popula...

متن کامل

A New Wavelet Based Spatio-temporal Method for Magnification of Subtle Motions in Video

Video magnification is a computational procedure to reveal subtle variations during video frames that are invisible to the naked eye. A new spatio-temporal method which makes use of connectivity based mapping of the wavelet sub-bands is introduced here for exaggerating of small motions during video frames. In this method, firstly the wavelet transformed frames are mapped to connectivity space a...

متن کامل

Spatio-temporal Embedding for Statistical Face Recognition from Video

This paper addresses the problem of how to learn an appropriate representation from video to benefit video-based face recognition. We pose it as learning spatio-temporal embedding (STE) from raw video. STE of a video sequence is defined as its condensed version capturing the essence of space-time characteristics of the video. Relying on co-occurrence statistics of training videos, Bayesian keyf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016